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The principal concern of this paper is to facilitate a rapproche-
ment of experimental and correlational methodology. While others have
discussea various relationships between experimental and correlational
methods (see Burt, 1947 and 1966; Creasy, 1957; Bock, 1960; McKeon, 1965),
the present unification, based explicitly on the work of Louis Guttman,
seems not to have been adequately discuassed.

My specific aim is to show algebraically the major relaticnships
among conventional types of product-mement correlatisn coefficients
(including simple, multiple and canonical r's es well as partial and part
coefficients) and the standard methods for analysis of variance (uni-
variate end multivariate, with or vithout covariates, fixed or randcm
effects). These relationships are shown through application of a rank
reduction theorem which Guttman (1944) first presented within the context
of fecior analysis. In focusing on an algebraic system no explicit atten-
tion is given to statisticsl inferential aspects of the respective methods,
Nevertheless, it is hoped that this paper will contribute to a better
urnderstanding of certain inferential procedures and theiyr interrelation-
ships. Restricting tie discussion to rlgebra should facilitate co.aputa-
tions for these metihods and an €asy-to-use computer program based on
Guttman's theorem ie briefly described for such apriications.

Suppose U, is an N x p matrix which is associated with p
measures on cach of N entities and that it is reasonable Lo examine certa’n
linear associations among the columns. If the pairs of variabl:s are
approximalely linearly related, it will often be fruitful to examine the

nroduct Uo' Uy wnich here will be d2signated as V,. Few assumptions about
O
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the rnature of the respective variables are required in so far as the
algebra of nulvivariate systems is concerned, Measures may be random or
fixed variables; they may be associated with qualitative cr quantitative
respcnses; or they could be fallible or infallible, original . derived.
Moreover, certain variables in a given system might be labeled independent,
deperdent or instrumental and the marginal or joint distributions ma} have
an immense variehby of forms even if scatterplnhs are taken to be approxi-
mately linear, Of course the interpretive wses of the derived statistics
can rnever be guaranteed even 'en the variates nnder study do satisfy
major asswaptions for a formal mettnod of analysis. WNo attempt is wade in
this paper to elaborate on appropriate uses of the statistics, or to
specify when subject-matter specialists are apt to find them of inter-
pretive value, despite the ultimate importance of such questions,
‘The rank reduction theoren states that for a p x p symmetrie,

Gramian matrix V., of rank r, and p x s weight matrix ¥ (such that
W' V_ W is non-singular), the matrix

(1) vy = Vo - Vo W (W v W)l vy
is a residual matrix of rank r - s. Guttwan (1752) pointed out that the
theorem can be repealedly applied to successive residuals so that at the

Jth stage ore can generate a p x p residual

2) Vi=Vi -V W, WSV, W)WV
( ) d j-1 J-1 3 ( 3 -1 j) Nj j-1
where Vi is of rank r - (s) + 55 + o0 + S5). .
If therc are k stages, then Ve will necessarily be null and 2 §j =71,
=]

All Wj's must be distinct and each product (wj' Vj_] wj) shcald he ron-
singular,
My interest centers only indirectly on the rank-reduction

aspects of the theorem; the main interest is to identity certain entries

2
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of verious members of (1) and (2) under differing specifications for
measures in the initial matrix Uy. It will be assumed for convenience
throughout this paper tiiat columns of U, are scaled to nhave means of zero,
although this assumption may be relaxed at later points. Also, for con-
venience, it will be assumed that V, is non-singular as well as Gramian;
this assumption is usually realistic whenever N »p, the latter being almost
universally desirable in practice. The remainder of this papcr is divided

Cemputational Synthesis.

Correlational Netiods

In this section I shall first examine a special case of equation
(1); next a special case of equation (2) is considered; finally, brief
discussion is given with regard to some general factor analysis problems.

Begin by partitioning Uj by columns: U, = XiY]. Xisor

order K x s and Y is N x t where t = p - g, This leads to
(Vo V. |
~ 1t XX X)‘ . . , .
Vo =Yg Ug = Vy VK While it was noted that in terms of elgebra no
X Yy

restrictions are required for the variables in Uo as to tyre, it may
initiclly be helpful to think of Uo as & set of p randem variables. V,
will usually be taken as a general varjarce-covariance patrix aithcugh it
will be useful at times to designate Vo, = R, a p x p matrix of simple

rroduct~mcwent correlations,

Recalling (1), which states that Vi = V5 - v, W (W' V, w)']w' Ve,
let the p x s weight metrix be defined as follews: y = Ii | . I.1is an

identity matrix of order s, and 2 is a t x s null matrix. The following

identifications nay be made:

RIC 3
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(1)

(2)

(4}

vow is a p x s covariance matrix for the first s variables in
the system with respect to the entire set of variavles. If

Vo = Ry then R4 is clearly a rectangular matrix of correlaticns.

] ey

W' V_ W is the covariance matrix V for the first s varlables.
o XX s :

Vo W may thus be written as., Vxx] or §Rxx1 .

If ! is replaced by W, where W, = WDy and Dp normalizes columus
of Voli, then Wi VW is a simple correlation matrix for the
first s variables,

)—l

Vo W W Vo W is a p x s matrix of estimated leact sgquares

regression ccefficients, This matrix zay be writien as

I. i A
I Z___| where rows of By x are sets of s estimated least
o~ . -=
B
vex

squares regressicon coefficiarts for predicting the t
respective criteria (rows). If Vo ®* Read W' Vo W Is 1 :placed

P

vy W, RW', then rows of B are standardized regression co-
n n? Yy X

aps s . : - -1
erficients; the latter matrix n=y be written as Syx Rxx‘
Vo W (W' Vg w)'l W' Vo it the covariance matrix o. the entire

set of predicted pertions of the variables., This matrix ray

be considered as an approxination to the initial V, wmatrix,
’

. ~ T,V
written y =, Gﬁ* XY, Note, however, that the first s
11 -
| Vyx ¥y |

variablrcs predict thémselves perfectly so 21l elenents of

00 except V&V are equivalent to the crresponding entries in

V, when using this particular W, TV, =R, then each dilegenal
entry of’\;yy = ﬁ&y is a squared multiple correlation coefficient
associated with s predictors for one of the respective ¢

~ -1
criteria, R may be written as Ryx Ryx ny.

yy

4
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(5) vy =V, -V, is the residual matrix which in this case will e

~

null except for Vyy - \&y' The normalized version cf the residusl

Fay
v = (V. - is the matrix of sth ord artial cor-
) = Yy = ¥y °F o2 o BT
relaticns between all pairs of & criteria, 1€ s = 1, all
t(t - 1)/2 coefficierts are lst order partials.

(6) Given that V. = R, the "half-normalize 17 matrix Ryy - Ryy is

a ratrix of part correlations. Yor exemple, if R(yy)l = Rvy - Tt

which contains t complerents of squared multiple coundifions as

its mwain diagonal entrics, is multipdci on the right by the

Py
diagonal rormalizins watrix ‘D2 , then any column of

L(l - smci}

coetficients in (R will contain sth order

“~ 2

Yy Ryy) Fa - sme, )
part correlaticus--correlations tetween an original criterion
varigble and the arror portions of the t criteria with respect
to the set of s predictors,

(7) Caunonical correlaticns between the sets of s predicters and ¢

criteria may tre found as the pesitive squure roots of the

~ -1 -
cigenvalues of either the product Vyy Vyy ; or vyy in the
metric of Vo (see Dempster, 19¢8). The same roctc are associ-

A -1
ated with R, Ryy‘ See Meredith (126l4) for a discussicu of the
algebra of canonical correlations under correcticus for un-
reliability of the variables.

- 5
(8) kigenvectcrs (right-hand) of V l, here called 53» define

Yy VYY
the canonical variates for the t criteria with respect to the

set of s predictors. The t dirensional column characteristic

- 3 -1~
tors b nputed = G,.' ‘here i h
vector qj may be ccmputed @s qj G& A y vj where Gy 1i the
Vs is
vy Ny
Q the diagonal matrix of reciprocal sQuare rocts of eigenvalues
ERIC -
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o1’ Vj and each Vj is an riren vector of the symmetric matrii
"1 > -1 . : .

N G? Vyy G‘y A . {MostL algorithms for pemerating roots
Yy -ty

and vectors reQuire symmeiric matrices.) Tne set of canonical

> . N
variates for the s predictors can be fourd by vsing ¢ - ...,

Ly

and proceeding analo ousiy--tinus reversing tne roles of the

predictors and the criteria,

Paragraphs numbered (9) - (16) are aualogois to those nusbered
(1) - (8) except that eguation (2) of Guttman's theorem is now considered,
this leading to partial statistics of vorious kinds most of which are
direct, albeit ceomplex, counterparts of the statistics already icdentitied,

- . i 1 I M -1 1
3 ) state L=V, - AR FUR P
Equation (2) shates that Vo=V, )= Vo )W, (K0 V, ) WOTT WSV

—_

kach matrix Wj shall be taken to be of the simple form T < © where s is

J
i -S-J. !
0
-
the dimcasicnality of the matrix IS 3y thus wj is of order p x §d' It will
=J
k
<
pe converient here to assume that fti Ed = 5, so tuat the so% of p
J:
variables in UO can bn considered as a set of § = §, « §p Foowe + 8y

predictors (X) which is adjoined to t = p - s criteria (7). Further, let
Jl
s* be X 53' for a particulars j'Sk.
J=1
Given the above spucifications, the rollowing identificatiens

may be made:

(9) Vj-l wj is a p x 35 rectangular matrix of par*ial covariances.

Analogous to Vo Wy in paragraph (1), Vj-l wj is just a vertical
slice of Vj-l’ the latter being a matrix which is described in
paragraph (13) below.

(10) W' V3.1 Wy is an 55 x s4 matrix of s¥*th-order partial
Q
ERIC 6
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(11)

(12)

novariances for the set of predictors at the j'th stage. If

columns of WJ are scaled to normalize columns of VJ 1 VJ

as in Vy) wnJ, then at stage Jl W' 3 V v an, is & matrix
of {s* - s ,Jth order partial correlations among the S50
predictors.

w (w is a p X s. matrix of partial re-

Wyt
-1 Vi1 M =733

gression coefficients., In general, the EJ' predictors at the

v

j'th stage are error portions of a particular set of predictors,
viz., those portious of Ed' variables which are not linearly
predictable from the preceding s* - EJ' variables. Thus, the
lever t x Sq0 poriion of vj'—l Wj. (Wj. Vj‘-l Wd.)-l is a
matrix each row of which contains semi-partial regressicn co-
efficients for predicting a sin,ie criterion from certain
residuels associated with tne Eﬁ' criteria.

vj-l Wj (Wj' Vj—l wj)'l Wj‘ Vj-l nay be viewed as an approxi-
mation‘Gj_l te the Vj-l matrix with which it is associated.

At stage J', G&‘-l is properly regarded as a set of partial
covariances among the portions of Eﬁ, predictors which are not
linearly predictable from the preceding s* - §ﬁ' predictor

variables and the remaining residuals in the system. If the
A

1 B R(W)Jv_l

contain squared multiple-partial correlations--tiiose (error)

A
initial Vg = R, then diagonal entries in V(yy)

rortions of the respective t criteria which can be predicted,
using a multiple lincar equation, from the errors associated

with the Ed' variables as described abcve. Given that
k

jza ﬁd = S, the sum of all kX such squared multiple partial

coefficients for a particular criterion variable is necessarily

"/



equal to the squared multiple correlation coefficient asso-
ciated with the encire set of s predictors. If
S} = Sp = ««. = 8y = 1 so that k¥ = s, then principal diagonal

Y
entries in R, re squares of conventional semi-partial cor-

gr-1?
relations. It shiould be noted that values of a szt of k semi-
partial or mulitiple-partial correlsti..ic (or covariances)
are conditional on a particular ordering of the k sets of
predictors unless tlie k sets are mutually orthogoial.
Rozeboow (1966) is an excellent source on this variety of
statistics.

/\ . ']

(13) Vv, = V. 1 = Vi, is a p x p matrix of partial covariances
J J- -1
also., At the j'th stage of application of equation (2),
Vj' is null in its first s* rows and columns. The lower t x t
pertion Vg, is a partial covariance matrix for the

(W)Jv
(s* - Ej')th order residuals of the t criteria with respect to
the portions of the s,, predictors wiiich are orthogonel to the
=J
preceding s* - S5 predictors. If V5, = R at the onset, then
the diagenal entries of V(yy) , contuin proportions of variance
J

of the respective criteria which remain to be predicted after
employiag s predictors in a linear prediction system. s one
noves from the j'- 1 to the j'th stage, equation (2) states
that increments of erroxr variability for eaclhi critericn variable
must be reduced by the amount of the scuaved multiple-partial
correlation described in paragraph (12'. The normalized fornm

of either V(yy)-. or R contains semi-partial correlations
J

(YY)j'
among the pairs of t criteria after holding the (s* - Ed')th

order error portions of the set of LR predictors constant.
Q

Aruitoxt provided by Eic:



(14) If vV, =R at the onset then the "half-normalized" version of
the t x t matrix R(yy)jv contains semi~-part correlations,
For example, if R(yy)j' is wultiplied only on the right by
its normalizing diagonal, then a column in tie product matrix
contains correlations between an (§¥ - sj,)th order arror portion
of a perticular criterion variabie and the set or' t - 1
criterion residuals which cannot be linearly predicted from the
(E* - ij)th order errors of the Eﬁ' predictors at stage j'.
{15) Canonical partial correlations between a particular set of
(s* - gj.)th order res. iuals for 550 predictors and the assc-
ciated set of criterion residuais can he obtained us in para-
grapa (7): such canonicals arve the positive sguare roots of
the eigenvalues of a mwatrix of the form kay)j‘ VE;y)j' .
Sucn canonicals are indced pencral since they subsume prac-
tically all of the preceding correlation coefficients as

special cases.

(16) Figenvectors of ?( s
SNy

at the j'th stage for the (error portions of) criterion

-1 .
V(\m) define the canonical variates
. J"

variavles with respect Lo (5* - gj,)th order error porticns of a
particular set of Eﬂ, predictors. Such cancnical variates may
also be generated from a symmetric matrix as described in

paragrapia (8).

The foregoing correlational analysis is based on equations (1)
and (2) of Guttman's rank reduction theorer where the welgiit matrices
have particularly simple form. Mucii of what was presented has been
"available" for over fifty years. 1In addition to the synthetic aspects
1of the preseni elatoration, its chief virtue may be to autcmate the

©
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computation of practically all of the preceding statistics through straight-
forwvard application of a simple theorem, a computer program for which may
be readily developed for any digital computer.

If the W3 matrices are allowed to range more broadly, an immense
variety of other methods can be identified with respect to equations (1)
and (2). For instance, starting with observed variables in U, where
Vo = Up" Ug, if the set of k weight matrices Wy {ecach of the order
P x sj) are allcwed to range over all possible distinct arrays, all types

of component analysis can be defined. If each wj is a distinct eigen-

vector which corresponds to the initial Vg (of rank k = r), then equation

(2) specifies the exhaustive set of princiral cempenents of Voo IF

Vo = R, tihen principal component analysis Is defined as it is typically
employed, Of course, the usuval approach to p¢ analysis, and common
factor analysis a¢ well, does not involve a priori specification of weignt
matrices; derived factors can, nevertheless, be defined in terms of the
rank reduction theoren.

If V, is replaced by a Gramian variance-covariance matrix of the
"common vortions" of variables, say, V, - Dﬁ , where Di isapxp
diagonal matrix of uniqueness variances, tuen any set of {Thurstonian)

common fectors can be generated for a given V -~ D, using a specific set

u?

of weight matrices W1, v...., Vh. Guttman (1952) discusses certain

e
aspecls of the lalter variety of applications in some detail,

Othier varicties cf "factor analysis" can also be associated with
the rank-reducticn theoren., Vg may be taiten, for example, as the
variance-covariance matrix of the "images™ of the initial p variables

(sce Guttman 1953) or scme "reproduced" portion of this matrix using a

limited number of factors (e.g. see Harris, 1962),

RIC
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For any such approacu to factor analysis, based on either (1) or

(2), Guttman noted that one could, by choosing weight matrices appropriately,

avoid completely the task of "rotation" -~ or facter transformation.
Indeed, Guttman {1952) argued that interpretable factors based on weight
matrices chosen a priori, presumably using a particular scientific Jjusti-
ficaution, are apt to be most compelling. While space limitations pre-
clude a discussion of this argument, it is clear that there are special
virtues of a direct analysis of a complex of variables using Guttman's
rank reduction theoren.., Those who are interested in a modern-day version
of such "Procrustes' factoring are encouraged to study the monumental work
of Karl Joreskog (1569,1970)on analvsis of covariance structures.
Equations (1) end (2) can be shown to be a sufficient basis for
deTining other methods as well, but we shall cmit discussicn of such
possihilities in order to proceed with applicetiors associated with

analysis «of variance.

Experimental Methods

In this section Guitman's rank reduction theor..n is used as a
vehicle for generating sums of squares and cross-products wihich form tae
basis of computations for a vide variety ol inferential vests in the
analysis of variance. It will be seen that the algebra of correlational
methiods, as presented in the preceding section, subsumes tue algebra of
practically all of the standard forms of enalysis of varidance including
those involving multiple dependent variables and covariates for fixed or
randcn effects, Moreover, many (balenced) incomplete designs may be in-
cluded within this paradigm.

It stiould be roted again in passing that questions oi "meaning-
1fulness" of sample statistics are not veing considered here. Any

©
ERIC 11
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interpretative use of derived statistics involves distributional theoryv as
well as assumptions about the nature of data for any given study. Need-
less to say, such factors should be given careful attention if any of tie
extant methods are to be employed in data analysis, Depending on what the
investigator determines to be a reasonable choice of independent and
dependent variables in a study, the procedures of this paper can be readily
apprlied using a simple computer program as discussed in the final section.
Again it is convenient to consider an N x p matrix U, which is

partitioned into a set of s predictors X (usuaily called independent

variables) and a set of t =1 s criteria ¥ {usually called dependent
Vixt V.
, xxt Vxy
va-iables). Taus, Uo = E XY ] and Vg = Uj Uy = ettt ; again,
vyxn VXX X

also for convenience, columns of U, will be taken to have zero means, wiaich
implies that V0 is a sum of products matrix or a covariance matrix. Tie
rank reduction theorem oi equations (1} or (2) will be used with weight

0
matrices W or W, Wy, ..o, Wk of the same simple form fg as vere

a9
empl~yed in the foreroing section.

The reader may prefer to think of dependent variables Y as con-
tinacus randeom variioles while X may best he viewed as a set of fixed or
randcn variables. In particular, let inderendent variables be partitioned
into a set of contrasts XA (wuicii may correspond to "planned ccmparisons”,
"main effects" or "blochking variables"), contrasts Xg (which may be
associated with classical “interactions" of two or more main effects) and

"eovariates" as in

randcr variables X (vuich ray be ascociated with
covariance analysis). Furluer, each of the subsets Xpy Xg and XC will in

turn be vertically portii‘oned to allor or designs of relatively more

12
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complexity as when, say, taree main effects (XAl, Xpos XA3) are studied,
using four internctions (XBlEs xBl3» XB23’ X5123) and two sets of covariates
(Xc1s Xc2)-

The plan for the remainder of this section is to enumerate in
paragraph form how the rank reduetion theorer may be employed to generate
sums of squares and cross-products for the major types of designs {one
-actor, factorial or nested each being with or without covariates) for
either univariate enalysis (AHUVA/ANCOVA) or multivariate analysis
(MANOVA/MANCOVA), Attention will be initjally wesfricted to orthogonal
factorial designs, After discussi.g the formal algebra for major design
categories several issucs which pertain te applications are triefly ex-
amined. Reference is made to examples in the Appendix to facilitate the
exposition,

One Factor (M)ANOVA

In the case of conventional one factor ANOVA or MANGVA, as in the
fully randomized design, equation (1) of Guttman's theorem is sufficient

to generate desired product matrices. Tie matrix X, or X , of Uo is taken

A!
as a cet of § = J - 1 contrast vectors when there sre J groups Y is a set

of t response variables; t =1 for univariate (ANOVA) studies or t >) for
multiveriate (MANOVA) studies. Example 1 in the Appendix, which is also
examined in Pruzek (1971), depicts contrast vectors for a simple four

group MANOVA where t = 2. The Guttman theorem may be used as

O—

- I
Vl = VO - VO W (w‘vo W) ].W'Vo for W =[ S ] ; the lower right E x E

- A
portion of the three respective matrices may Le written v(yy) = Vvy - Vyy

cr, in more conventional terminolcyy, E =T - B, where T is the total sums
of squares and producis matrix, B is the between or among matrix of sums of
Q@ juares and protucte; E is the residual or within mavrix. Univariate

ERIC
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analyses correspond to these being 1 . 1 matrices, i.e. scalars, The
particular scaling of columns of Y are irrelevant with respect to statistical
tests since all standard test results are known to be invariant with respect
to linear transfoimations of dependent variables.

It should also be noted ihe s contrast vectcrs may be associated
with individual degrees of freedom; if the contrast vectors correspond to
particularly "meaningful" comparisons of various combinations of groups,
then equation (2) designates the usual planned comparison approach where
S) T 85 % eer TS5 4% 1. If the contrast vectors are not mutually orthog-
vnal, then difficulties will typically arise in interpretation of the
planrcd con parisons for a particular ordering of contrasts. Orthogonal
planned comparisons are therefore apt to be most useful. The reader may
wishh to satisfy himself that the basic computatiors for many EQEE‘EQS tests

may also be carried out within the present context,

One Factor (M)ANICVA

The fundamental distinguishing feature of a covariance analysis
is that the independert variable set includes one o1 more (antecedent)
random variables in addition to fixed variables. For one-factor analysis

of covariance, X is comprised of X, and XC matrices as in X = (XAE XC). In

A

this case two stages of equation (2) are required to generate matrices for

tne analysis of covariance. First, for & set of 5 covariates, use

w(l) = So and note that the lower t X t portions of the three product

1O, HIO

-

. - - ¥ -lwl a |
product matrices in V(l) =V, -V w(l) (w(l)vo w(l)) d(l)vo correspond to

A -~
the equation v(yy)(l) = Vyy - Vyy or, in standard terminology, T* =T - T

~
vhere T represents the portion of the total variation for t variables

which is linearly ascociated with the covariates. Wiile one might naturally

O
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be led to find V, using equation (2) where the weight matrix selects con-
trast vectors in X, covariance analysis is not appropriately done this way
since to do so would be to improperly specify regression coefficients.

-1 I
Rather one generates Vi = Vg - Vo Wy (W{V, W{) "W, V, where W, = s5

e

for 5 = J - 1, the number of contrast vectors in X, and foilows by finding

HiO

-1
Vo = Vy = Vq Wy (WAVy Wp) WAV, where Wy = » i.e. Wy =W(1). Since

1O

the lower t x t portion or Vl is of the form E =T - B, it follows that the
lower t x t portion of V2 is E¥ = E - ﬁ where §~is the portior. of the within
groups variation linearly predictable from the set of S covariates, One
factor MANCOVA thus requires T* and E¥ as well as B¥ = T¥ - EX as its sums
of products matrices for any of the standard MANOVA tests with appropriate
degrees of freedcm. Sce Bock and Hagpard (1968, p. 130) for a further dis-
cussion of tiis method. For an illustration consider Appendi: example 1
where for purposes of illustration the 1lsi response variable is taken as a
covariate with respect to the second response variable.
Factorial Design (M)ANOVA

Computations for factorial desingns may be generated by using XA
and XB matrices whicl are comprised of ageregates of contrast vectors. Any
particular aggregate of contrasls i1y be viewed as specifying comparisons
among defined groups of (vector) observations. Example 2 in tae Appendix
includcs an X watyix which might be employed for a 2 x 3 factorial design.
Reference will be made io this example in the following general discussion.

If all subgroups associated with a factorial design are of equal
size, Lhen contrast vectors for different main or interaction offects will

be mitually orthogenal. This implies that the ordering of effects is

ERIC 15
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inconsequential with respect to the magnitudes of the derived sums of
products matrices or the associated test statistics. If cne desires a set

of ki main effects, he simply specifies Xy = [:XAl’ vaey XAkl ] as a set

of appropriate contrast vectors, as in example 2., ZEach aggregate of con-
trasts XAj corresponds to a row partitioning of (vectcr) observations in

the dependent variable set Y, Successive applications of Guttman's theorem,
following equation (2), generate Vg, Vi, ... Vkl as well as the approxima-
tions Vg, Vi, «u. Vkl; the lower right t x t portions of these‘products

A
contain useful matrices for (M)ANCVA computations. The set vyy’ v(yy)l’

A

A
- (v + ouas

Wiz, ~ V) T Von

N
+ V(yy)kl) are simply the total sums of products for kl factors (main effects)
and, ultimately, a residual matrix. If interaction effects are desired for
any ccmbination of effects, tlese are obtained using applications of

equation (2) with respect to Xg =l— Xp1os Xpy3s +oes XBke ] for k, the

number of interaction effects. Fach agsregate of interaction contrast
vectors may be found using elementwise products of entries in contrast
vectors associated with a particular combination of rain effects. The

A
necessary sums of products matrices now will be vyy! V(yy)l’ vy

-~ ~ Fa)

v(yy)kl’ v(yy)kl £, Tt v(yy)kl + X, and the final residual V

(vy)k, + kot
The degrees of freedoem for & particular effect are always equal to the
number of vectors in a particular aggregate; this is true for main effects
or interactions. See example 2 below and ti:e anilyses of this 2 x 3 design
by Moriison (1967) as well as by Pruzek (1971). If, as is being assumed
hare, the subsets of contrasts in X are mutually crthogonal, then any t x t
ratrix of the form kaY)J will be the sare, whether computed as

[} =gt . .
j-1 or as Vo Wj (Wj v, WJ) 1WJVO, the latter fact

»
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may be especially useful in applications where only a computer program for

product-moment coefficients is available. See Bock and Haggard (1968) for

an excellent review of the statistical considerations for MANCOVA applica-

tions. Alsoc see Mendenhall (1968) for more discussion of the linear models
approach to ANOVA, and Graybill {1961) for technical details.

Factorial Design (M)ANCGVA

Toils class of methods simply adds a special wrinkle to the
methods reviewed in the preceding raragraph. The major null hypothesis with
which either ANCOVA or MANCOVA is concerned is that particular effects are
null when dependent variables are linearly adjusted to the values they
ostensibly would have if all relevant groups of entities were e¢iivalent to
one another on the antecedent variables. Since Bock and Haggard (1968)
present the general matrix approach to MANCOVA, it is necessary here only
to express their results in the terminology of this paper.

Once all of the sums of products matrices for effects of tiie pre-
ceding paragraph are computed, as well as a ¢ X t residual malrix E; then
one proceeds to generate & "corrected”" residual matrix E'= E --E where E
represents the portion of the residual variation wihich may be attrituted
to the set of covariates in X, and & special "eorrected" total matrix for
each effect of interest. A separate subtotal matrix must be canputed for
each effect in order properly to generate the minuend with rospect to which
E¥ is the subirahend for producing the corrected effects matrix of suns of

A P
i Tj vhere TJ

A
matrix 'I.‘:j = E + V(yy)j which is linearly predictable from the set of co-

products. That is, Tg =T repre~ents the portion of the

n
variates in X . Then V( . = T% - E* as regquired for the jth effect in
c )i ot

MARNCOGVA, Bock & Haggard point out that any of the standard multivariate

A
tests may be applied to the matrices V¥ | ard F* using the usual depgrecs

(vv)J

of freedci for effects and error degrees of freedom d.f.e - k3 for k? the

17
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number of covariates.

Nested Desipgn MANOVA/MANCOVA

The concept of nesting has already been tacitly discussed in the
foregoing paragraphs of this section, Whenever one replicates a particular
experimental combination in order to gererate a group of (vector) observa-
tions, the observations within the group are properly regarded as nested.
If, as in orthogonal designs, one nests the same number of observations in
every experimental group then the final residual matrix, say E, may be
regarded as an aggregate ol nested effects associated with entily veviation
within groups.,

This concep’ may be generalized, however, as when a set of
factors for a design s hierarchically arranged, The computations for
nested designs are entirely straightforward with respect to the results
already gaiven for general factorial designs. The major distinguishing
feature of computations for ne. ed designs is that interaction effects
have no meaning so tnet depending on the "tier" of a factor in a hierarchical
design, computation of the effect matrix involves pooling contrast vectors
which for factorial designs had been associated with interactions and with
main effect contrast vectors. As an example if three factors 1, 2 and 3
are hierarchically arcanged as 1, 2 within 1, 3 within 2 within 1, then
contrazt vectors for the tiree effects of this design would require three

Wy matrices using equation (2) which selectedl Xa1 1 s [:XA2E xBl2] s

. . | [ :
and [ XA3E xBl3E x823i hBl23 ] of the contrast matrix X, See Winer (1962)

for details of the ditcussion of computations and interpretations of
effects for these designs. Mulcivariate extensions of his discussion are
irmediate,

Covariance aralysis for nested designs could be done along the
Q
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seme lines as discussed in the preceding paragraph were an investigator to

regard this as useful.

Incomplete Design MANOVA/MANCOVA

The limited objective of this section is to present an approach
to the analysis of balanced complete designs under the rubric, fractional
factorials., These designs formally include latin square designs and
balanced incomplete block designs so to cover fractional factorials in
detail is to be reasonably comprehensive. It should be noted, hovever,
that there are incomplete designs, particularly unbalanced iucemp’che scth-
ups, which do not lend themselves to a matrix-based analysis.

Fractional factorials may be characterized as factorials from
which selected experimental ccmbinations have been systematically deleted
to allow study of a relatively large number of factors using a relatively
small number of experimental units. The deletions amount to taking rows
away from the design matrix X to yield X* so that conlrasts -eain in X*
(i.e. meant of columns of X* are zero). Thus, equation (2) of tiis paper
suffices to generate sums of products matrices which are commonly used in
statistical tests as i thie praragraph on factorial designs above. For the

nost used variety of fractional factorials, the Zk-p designs, the wj matrix

for the jth effect is simply a vector of the form where

10 HIO
—
I

1O IO

the value of unity corresponds to the jth contrast vector in X* -- the jth
effect. See Mendenhall (1968) for a discussion of kP designs within the
centext of linear models and Mclean (1966) for an example which, because
the author gives raw observations, is readily susceptible to analysis
using the approach suggested here.
As with nested designs, covariance anzlysis can be conducted for
Q hese incamplete designs using the methods of tlie paragraph on MANCOVA.

ERIC 19
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Although the foregoing discussion is abbreviated and largely
restricted to computational methods, I do not wish to convey the impression
that I condone a cavalier approach to choosing either independeat or
dependent variables. Some commentary regardirng issuves and general prob-
lems of experimental analysis may therzfore be useful.

Regarding the approach gererally, which is based on Guttman's
rank reduction thecrem, two references should be cited. Suits (1957)
discusied the issue of dummy variables in regression pointing out that
two or three different regression approaches may be taken to the specifi-
cation of independent variables for the analysis of variance, It was
made clear that the contrasts approach is not uniquely appropriate despite
the fact that it lends itself to a particularly simple analysis for
general applications and facilitates a comparison of experimental and cor-
relational analyses of data, The second referencc is Beaton (1964) which
includes a discussion of a "Sweep" operator for matrix calculus which is
in certain respects closely related to the present approach. Dempster
(1968) discusces Beaton's operators in some detail and applies them in the
analysis of multivariate dats.

Another issue is that of selecting dependent variables for
analysis. If an investigator is primarily inte..sted in statistical tests,
especially those which are likely to require less stringent assumptions
about data than conventional parametric Lests, he may study the approach
of Gabriel and Sen (1968). These authors present a test statistic based
on ranked scores which may be derived using the algebra of the present
paper where each column of observations in Y is taken as a set of ranks.
Their chi square staiistic is shown formally to specialize to the Kruskal-

1wallis statistic for ANOVA using ranks as well as the Wilcoxon rank scores

EI{I(jst.
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The mnre general problem of sz2lecting metrics for dependent
variables continues to be studied. In the case of experimental data,
strong arguments have been made (see Tukey and Wilk, 1966) for transform-
ations which reduce the portion of variance for non-additivity of a
variable. That is, one should choose the metric for a variable in such a
fashion that interaction effects will be relatively small in reiation to
main effects. Pruzek {1971) discusses the general issue of choosing
dependent variables further with some attention to the issues of variable
vnreliability and choices among transformations. Various plots of residual
v;lues {see Wilk and Gnanadesikan, 1968) become essential when examining in
detail the appropriateness of a model for analysis; in the next section a
camputational approach is outlined for couputing residuals for various sums
of products matrices of the present paper. Textbooks such as Mendenhall
(1268), Winer (1952) and Hicks (1564) should be consulted for discussion of
issues relating to the selection of independent variables in ANOVA,and
Bock (1963) and Bock and Haggard (1968) are strongly recammended for dis-
cussion of the matrix approach to MANCVA and MANCOVA,

Computationnl Synthesis

The rajor objective of this paper iias bteen te unify classical
correlational and experimental approaches to the analysis of data with
respect to the algebra of camputation, It has been shown that a single
theorem, originally due to Guttman (1944, 19572), can be scen to provide a
vehicle for drawing these well-known classes of methods tcogether. Refer-
enices hrve been given throughout the paper *o facilitate the read-r’'s
further study of thess relzticnships with respect te a wide variety of
issucs ard problems which are ccrmonly encountered in scienvific research,

A ccomputer prograr. has been written to gererate all of the

matrices of equations (1) and (2) for Guttvwan's rank reducticn thecrenm,

21
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The program 1s presently written to read in data in the form of a cross-
products {or covariance, or correlation) matrix Vo and a series of weight
matrices, Wy, which are to be specified according to the user, (The pro-
gram is being modified to read in "data" matrices of the form U, and to
allow "on-line" specification nf a sequence of weight matrices; these
improvements should substantially facilitate instructicnal uses of the
present approach besides permitting more convenient ccmputation of various
residuals, as is noted below),

(mtputs of the program are most conveniently labelled in the
lenguage of factor analysis; however, the reader may wish Lo make reference
to either of the first two sections of this paper to help interpret entries
of the respective matrices. Fguation (1) corresponds simply to a special
case of equation (2) so no further attention is needed for the simpler
equation.

Given Vg ard Wy, Wp, ..., Wy, the following matrices are inclided
in the output:

() vj—l wﬂj for j =1, ..., k
This is a pattern rmatrix for the primaries in general.

(b) W'V

nj¥j-1 an for j =1, ..., Kk

This is the correlation matrix of the "priraries" in the
langmage of factor analysis.

' -1 :
(c) Vj-l ng (ngvj_l ng) for j = 1, ..., k

This is the structure matrix for the "primaries"; entries are
properly regarded as regression coefficients,

a)y v, , ¥ w'voow o )-L =1, ...
(@) vy, nj ( 23'5-1 “nj) dﬂj Vi ford=1 .ok

A
This is an approximation, Vj-l’ to the matrix Vi-l which is

%

based on variables which are selected by Wj.

ERIC 99
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(e) v, =V, -V, W (W v, W .)'lw' V. o for j =1, ..., K
J J-1 J-1"nj “'n;'j-1 nj ni j-1
This is a residuzl matrix associated with the comparison of
Vj—l and'Gs_l. The lower t x t portion of tnis matrix may
be of special interest in applications if wj matrices are
chosen in the fashion of this paper.
() p, Vi D, for all § =1, ..., :
This is a matrix of partial éorrelat}ons associated with
any pairs of variables for which ihe diagonal elements of
Vj exceed zero,
The set of yroducts (a), (b) and {c) may also be generated without
scaling Hj to normalize Vj—13 as when raw score regression ccefficients are

desired,

ample 1 of the Appendix gives the initial U, =[:'X: Y ] for a
t

t = 2 one factor MANOVA as well as the associated Vo and the derived
matrices E = T - %, each of order 2 x 2, Columns of X have been chosen to
correspond with orthogonal polynomials since doing the analysis in this way

allows quick f:and check..g of the results; V. = X'X is diagonal as is

V;i . (The reader may wish to satisfy himself that in this context

XX

orthogonal polynomial coefficients offer great potential for general appli-

cations of factorial design MANOVA regardless of whether factor "levels"

are quantitatively related to cne another,) The required {corrected) sums

of squares for one-factcr MANCOVA ave also given for this example follow-

ing the strategy of paragraph (2) i1 the second section. For this iliustra-

tion the first dependent variable is used as a covariate with respect to

the second.

The next example in the Appendix gives the raw data for Y and tvo

i%zmlternate design matrices, labelled X, and Xy, for a 2 x 3 factorial design

ERI!
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MANOVA, The data are taken originally from Morrison and are also included
in Pruzek {1971). The Vg matrix is scaled to correlation metric and this
Vo is used to derive sums of products matrices for testing the effects for
Rows (SEXES), Columns (DRUGS) and Interaction (SFXES & DKUGS).

It should be clear from these eiamples that the algebra is
equally appropriate for many more general applications of either correlation
or regression analysis,

Finally, it should be helpful to incicate how one might generate
matrices of residuals given matrices of the form Vj, Vj-l or Gj-l’ and the
algebrz of Guttman's theorewm. Such quantities are easily derived using
matrix equations.

The classical least squares estimates of factor (or component)
scores in factor analysis may be expressed in present terms as

. -1 -1

Ug =Ug Vo Vo ¥ (W'Vo W)

Howcver, within the context of this paper, where estimates of dependent or
criterion scores Y are of special interest, one can use the equation

5 -1 -1
= Yo VyyVyx VaVny

which may also be written

Y-y, VT
= To Vyy (i3
Thus, to generate residut s at any stage ', one needs only to compute

\
) N ‘ . -1
Y, V(yy)jv(yy)j which can be shown to be equivalent to ¥, V(yy)j'(vj'-l - an),

for the differences between estimates at stage i'-1 and stage j'.

Do
o
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APPINDIX

Givgn the deta in the ume: nor@iog of Tgble 1, the suns of
nroducts matrices; ol orde~ 2x2; were derived for erro~, total and between
sources ol varfation, These matrices are desinneted Z, T and R and are nre~
sented in the lower vortion of Teble ). Por covariance anelysis, uvsing
the let dewendett variable as a covariate Tor the second, th-ee corrected
sums of squares ave T* = 28 - (h0)2/17b, B = 3 - (8)2/20 and x = 18.80

- 2-,47 = 16-330

Ixamole 2

Table 2 includes the raw scores for ¥ as vell as the de/letion
scores Y {either of which will fanerate the desired effects matrices below)
and tvo possible desisn (X} matecices {or gerne atinz sums of = -odvcts fo= e
2x3 MANOVA vhere § - 2. The date ace token from i'orrison (1058). Table 3
includes the Vo mateix scaled in correlation metric as well as the associa-
tec sums of n-oduchs matrices from vhich stetistical tests may te carcied
out (see P.uzek (1971) for an analysis of these data vhich Tollows these

lines), Tre natsix X, vas used 7o this varticula~ V.
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Table 1

Independent and Dependent Variable Values and Sums of Froducts

’ For a t = 2 MANOVA with n = 2 for Each of b Groups
X ¥
- 3 1 17 o= 2]
3 1 1 5 I
1 -1 -3 o -1
1 -1 -3 & -1
-1 <1 3 1 0
-1 -1 3 -5 -1
-3 1 -1 -5 =2
-3 1 -1 -7 -1
30 bk T 174 Lo - 14 36
E = ) T = N B ::
L3 Lo 28 36 25
28
O
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Table 2

An Exanmple of Data and Two Possible Design Matrices
for & 2 x 3 Orthogonal MANOVA where p = 2 snd n = L

Y*
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Table 3

Certain Matrix PToductsl Associated with
Morrison's 2 x 3 MANOVA with t =2

Uy {rescaled in correlation metric)

™ 1.00 T
1.00  1.00

i
]
]
1
'
'
.00 .50 1,00 \
1
1
.00 .00 .00 1,00 :

‘

]

1

§

.00 .00 .00 50 1.00

olo .75 716 -a73 b8 | 1.00

060 -3~ o588 b6 -.295 i .71% 1,00

i
T T .
¥y (yy)1 (my)2 (yv)3 (v¥)3
1.00 .71k 002,002 ° 133,355 .035  .078 230,279 7}

1.000 2” .coh_+ 108 ' 176 4[ .622J

For syrmetric natrices, only upper-right portions are given

O
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Appendix

Table 3

Errata for Pruzek's "Unification of Methodology"

Correction

Para. (8), 1. 4.
Line 1.

Para. (11}, last 1

Top p. 13, top and
middle of p. 16.

1. 3.
1. 4.

Last equation &

sentence which follows

Ex. 2, 1. 142

footnote

31

Should read "computed as .= G A v."
hould re Pu %G 8y Y

"of Lt
Should read Vyy and
Should read "with the S5 predictors.”

Contrast matrices 9h0u1q be vertically
partitioned, as in (Xp,. Xy, Xps).

Should read "considerations for MANOVA.."

Should read "balanced incomplete designs.."

Toev !9
i o yy (yy/)\.i
" -1 :
and Yo V(yy)j' v(yy)j' which can be sm%vn
to be equivalent to YOV(yy)j.(Vj._]-Vj._1)”

delete words between "raw scores for Y.."
and "..and two possible design (X) matrices"

Should read ".. only triangular portions are
given.”
. also upper portion of U_ 'Y should read
1.00 °°

.00 1.00 (etc.)



